The stability of the Kronecker product of Schur functions
نویسندگان
چکیده
In the late 1930’s Murnaghan discovered the existence of a stabilization phenomenon for the Kronecker product of Schur functions. For n large enough, the values of the Kronecker coefficients appearing in the product of two Schur functions of degree n do not depend on the first part of the indexing partitions, but only on the values of their remaining parts. We compute the exact value of n when this stable expansion is reached. We also compute two new bounds for the stabilization of a particular coefficient of such a product. Given partitions α and β, we give bounds for all the parts of any partition γ such that the corresponding Kronecker coefficient is nonzero. Finally, we also show that the reduced Kronecker coefficients are structure coefficients for the Heisenberg product introduced by Aguiar, Ferrer and Moreira. Résumé. Dans les années 30 Murnaghan a découvert une propriété de stabilité pour le produit de Kronecker de fonctions de Schur. En degré assez grand, les valeurs des coefficients qui aparaissent dans le produit de Kronecker de deux fonctions de Schur ne dépendent pas de la première part des partitions en indice, mais seulement des parts suivantes. Dans ce travail nous calculons la valeur exacte du degré partir duquel ce développement stable est atteint. Nous calculons aussi deux nouvelles bornes supérieures pour la stabilisation d’un coefficient particulier d’un tel produit. Nous donnons en outre, pour α et β fixés, des bornes supérieures pour toutes les parts des partition γ rendant le coefficient de Kronecker d’indices α, β, γ non–nul. Finalement, nous identifions les coefficients de Kronecker réduits comme des constantes de structures pour le produit de Heisenberg de fonctions symétriques défini par Aguiar, Ferrer et Moreira. Resumen. Hace poco más de 80 años Murnaghan descubrió un fenómeno de estabilidad para el producto de Kronecker de dos funciones de Schur. En grado suficientemente grande, los valores de los coeficientes de Kronecker que aparecen en el producto de Kronecker de dos funciones de Schur, no dependen de las primeras partes de las particiones que las indexan, sino solamente de sus demás partes. En este trabajo calculamos exactemente cuando este desarrollo estable esta alcanzado. También calculamos dos nuevas cotas para que cualquier familia dada de coeficientes de Kronecker se estabilice. Dadas dos particiones α y β, proporcionamos cotas superiores para todas las partes de cualquier partición γ tal que el coeficiente de Kronecker correspondiente no sea nulo. Finalmente, identificamos los coeficientes de Kronecker reducidos como constantes de estructura del producto de Heisenberg de funciones simétricas, introducido por Aguiar, Ferrer y Moreira.
منابع مشابه
The Kronecker Product of Schur Functions Indexed by Two-Row Shapes or Hook Shapes
The Kronecker product of two Schur functions sμ and sν , denoted by sμ ∗sν, is the Frobenius characteristic of the tensor product of the irreducible representations of the symmetric group corresponding to the partitions μ and ν. The coefficient of sλ in this product is denoted by γ λ μν , and corresponds to the multiplicity of the irreducible character χ in χχ . We use Sergeev’s Formula for a S...
متن کاملKronecker Coefficients for Some Near-rectangular Partitions
We give formulae for computing Kronecker coefficients occurring in the expansion of sμ ∗ sν , where both μ and ν are nearly rectangular, and have smallest parts equal to either 1 or 2. In particular, we study s(n,n−1,1) ∗ s(n,n), s(n−1,n−1,1) ∗ s(n,n−1), s(n−1,n−1,2) ∗ s(n,n), s(n−1,n−1,1,1) ∗ s(n,n) and s(n,n,1) ∗ s(n,n,1). Our approach relies on the interplay between manipulation of symmetric...
متن کاملOn the Kronecker Product of Schur Functions of Two Row Shapes
The Kronecker product of two homogeneous symmetric polynomials P1 and P2 is defined by means of the Frobenius map by the formula P1 ⊗ P2 = F (F−1P1)(F−1P2). When P1 and P2 are Schur functions sλ and sμ respectively, then the resulting product sλ ⊗ sμ is the Frobenius characteristic of the tensor product of the irreducible representations of the symmetric group corresponding to the diagrams λ an...
متن کاملKronecker Product Identities from D-finite Symmetric Functions
Using an algorithm for computing the symmetric function Kronecker product of D-finite symmetric functions we find some new Kronecker product identities. The identities give closed form formulas for trace-like values of the Kronecker product. Introduction In the process of showing how the scalar product of symmetric functions can be used for enumeration purposes, Gessel [3], proved that this pro...
متن کاملCOMBINATORIAL OPERATORS FOR KRONECKER POWERS OF REPRESENTATIONS OF Sn
We present combinatorial operators for the expansion of the Kronecker product of irreducible representations of the symmetric group Sn. These combinatorial operators are defined in the ring of symmetric functions and act on the Schur functions basis. This leads to a combinatorial description of the Kronecker powers of the irreducible representations indexed with the partition (n− 1, 1) which sp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009